# Dilepton Physics with the PHENIX Experiment at RHIC



James Nagle Columbia University

### Signatures of Plasma Formation



### **A.** Deconfinement

• Suppression of quarkonia  $(J/\psi, \psi', Y)$  states



### **B.** Thermal Radiation

• Prompt  $\gamma$ ,  $\gamma$ \* to e<sup>+</sup>e<sup>-</sup>,  $\mu$ <sup>+</sup> $\mu$ <sup>-</sup>



### C. Chiral Symmetry Restoration

- Disappearance of p state
- Mass, width, B.R. modification of φ



### **D.** Strangeness, Charm and Bottom Production

Nuclear effects, fast thermalization



### **E.** Jet Quenching

• High pt jets via leading particle

### F. Equation of State

• Hydrodynamic flow, correlations, coalescence



# Lots of Physics



# Relativistic Heavy Ion Collider

Au + Au collisions at cms energy 40 TeV (200 GeV/u)

• 10<sup>12</sup> collisions per year

p + p collisions at <u>500 GeV</u>

polarized beams

Everything in between





# **Experimental Challenges**

Violent collision of Au + Au nuclei at ~ 40 TeV

Thousands of particles produced (mostly hadrons)

Here is the muon you are interested in











# More Experimental Challenges

- Thousands of  $\pi$  produced in the collision
- Ratio of  $\pi$  to electrons is ~ 1000 : 1
- Must reject  $\pi$  at the level of 10<sup>-4</sup> over a broad range of momenta to cover the necessary physics



 Also, once one has a good lepton sample, there are many "background" leptons that must be rejected or subtracted out





# Even More Experimental Challenges

### CERN-SPS at 17.4 GeV/u



J/ $\psi$  in PbPb:  $\sigma \sim 2$  mb

Collision rate: 3 x 10<sup>6</sup> Hz

Running/year: 5 x 10<sup>6</sup> s

Bottom Line:  $5 \times 10^9$  / year

### RHIC at 200.0 GeV/u



J/ $\psi$  in AuAu:  $\sigma \sim 50$  mb

Collision rate: 1 x 10<sup>4</sup> Hz

Running/year: 2 x 10<sup>7</sup> s

Bottom Line:  $2 \times 10^9$  / year

<sup>\*</sup> Branching fraction, acceptance, efficiency reduce the number to  $\sim 10^5$ - $10^6$ / year

### Threshold Effects

RHIC is ideally situated for exploring charmonium as a probe of dense nuclear matter.

J/ψ remains a "rare" probe, but measurable with fine binning as a function of centrality, pt, and collision energy.



# PHENIX Experiment

PHENIX - only RHIC experiment specifically designed to measure rare probes in the lepton and photon channels.

It can sample all
Au + Au collisions up to
10 times RHIC's design
luminosity



Two central electron/photon/hadron spectrometers

Two forward muon spectrometers

# Meeting the Electron Challenge

- Central Arms Cover  $-0.35 < \eta < 0.35$
- Charged particle tracking
  - Drift Chamber
  - Pad Chamber \_\_\_\_\_\_
  - Time Expansion Chamber
  - Ring Imaging Cherenkov Counter
  - Electromagnetic Calorimeter-
  - Time of Flight Hodoscope



Hadron rejection at 10<sup>4</sup> level in Au+Au central collisions over a broad range in momenta requires many detector technologies

# Meeting the Muon Challenge

- Muon Arms Cover  $-1.2 < \eta < 2.4$  (North)
- $-1.2 < \eta < 2.2 \text{ (South)}$
- Tracking with 3 stations of chambers in magnetic field
- Muon Identification with 5 layers of steel absorber and Iarocci tubes
- Low energy cutoff at ~ 2 GeV





# Meeting the DAQ Challenge

Designed to handle data at up to 10 times RHIC design luminosity

Data Collection Modules are designed for a maximum rate of 25 kHz or ~ 50 Gigabytes per second.

High level triggers and zero suppression must reduce this to 250 Au+Au or 2900 p+p events to tape per second.



# **Charm and Beauty**

In order to understand  $J/\psi$  yields, we must understand charm production

- Total production rates
- Shadowing (nuclear effects)
- Jet quenching in plasma

Direct reconstruction of open charm is optimal.

One can also measure open charm and bottom contributions through **single leptons** and **lepton pairs**.

$$B^{0} \rightarrow D^{-} \pi^{+}$$

$$B^{0} \rightarrow D^{-} e^{+} \nu_{\mu}$$

$$B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu}$$

### **Cross Sections?**

In initial parton-parton collisions we create q-qbar pairs.

The cross sections for these processes are not so well known at this point.



Charm cross section in p+p: ~ 200-400 microbarns

**Bottom cross section in p+p: ~ 2-4 microbarns** 

And the momentum space distribution must have some real uncertainty too. K factors are somewhat funny since NLO calculations show changes in distribution not just normalization.

# Direct Measure of Open Charm

Large combinatoric background in the hadronic channel.

$$D^0 \rightarrow K^- \pi^+$$

Silicon Detector to measure displaced vertex not included in PHENIX, but also looks difficult for any experiment due to high multiplicity.

Matching of all pairs with a lepton tag for the other charm partner may work for p + p, p + A, ....?



 $K\pi$  invariant mass distribution in p+p events with charm pair, calculated with PYTHIA. A peak at 1.8 GeV is a signal of  $D^0 \rightarrow K\pi$  decay.

Study by Y. Akiba

# Single Leptons

### **Electrons in PHENIX**



### **Muons in PHENIX**



Study by Mickey Chiu, JLN

Study by M. Brooks, J. Moss

### **Electrons and Muons**



- Excellent additional check on charm and beauty production.
- Different signal spectra and background contributions.
- However, also different acceptance and efficiency issues.

### Maybe too much of a good thing?

The single lepton spectra has a wealth of information.

The glass is half full



- Yield reflects partonic charm and bottom cross section, nuclear effects, and possible thermal production.
- Shape reflects pdf's, shadowing, energy loss, ......



Too many unknowns and not enough equations?

The glass is half empty



# J/ψ Suppression





### Vector meson J/ψ

bound state of a charm quark
 and anti-charm quark

The pair feels an attractive force and can form the above bound state. However, in the middle of a quark-gluon plasma the attractive

force is screened.



### **QCD** Thermometer

Hadrons with radii greater than  $\sim \lambda_D$  will be dissolved (suppressed) Debye screening length  $\lambda_D \sim 0.5$  fm at a temperature T=200 MeV

As the temperature is raised above the critical temperature, one should see the sequential suppression of the various "onium" states



### Dielectron Spectra



Excellent resolution for distinguishing states  $(\rho, \phi) \ \ and \ (J/\psi, \psi')$ 

Acceptance at  $x_F = 0$  (mid-rapidity)

Good acceptance at low pt  $(\text{key for } \rho, \phi)$ 

# Dimuon Spectra

Excellent statistics on J/ψ

Large Acceptance (10 x that in central)

Good resolution for distinguishing states  $(J/\psi, \psi')$ 

Acceptance at higher  $p_t$  for low mass states  $\rho$ ,  $\phi$ 



### Rapidity Dependence





PYTHIA rapidity distribution for  $J/\psi$  and Drell-Yan (as an example).

Central (electron) arms and forward (muon) arms measure in different regions.

They will be sensitive to parton distribution functions, nuclear effects and different co-mover densities.

Measuring as a function of rapidity  $(x_F)$  will be important.

# Transverse Momentum



Pt (GeV)

### When? When? When?

|               | $J/\psi (\mu^+\mu^-)$ | J/ψ (e <sup>+</sup> e <sup>-</sup> ) |                                                                                                      |
|---------------|-----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|
| Year 1 (2000) | 0                     | 25                                   | Assumes 8 weeks at 10% design<br>Energy is 140 GeV, not 200 GeV<br>Only 50% coverage in central arms |
| Year 2 (2001) | 5.0 x 10 <sup>4</sup> | 1.0 x 10 <sup>4</sup>                | Assumes 37 weeks at 50% design<br>Commissioning of muon South arm<br>Commissioning of triggers       |
| Year 3 (2002) | $3.0 \times 10^5$     | 5.5 x 10 <sup>4</sup>                | Assumes 37 weeks at 100% design                                                                      |
| Year 4 (2003) | 6.1 x 10 <sup>6</sup> | $5.5 \times 10^5$                    | Assumes 37 weeks at 10 x design                                                                      |

Commissioning of muon North arm

# **Year-1 Configuration**

Maximum 8 weeks running.

Maximum 10% design luminosity

Central Arm Spectrometers.

Maximum Energy ~ 140 GeV/u

I think we will learn a great deal (see global and hadron physics), \_ but just getting started with leptons.

PHENIX run 2000 configuration

Detector instrumented

Detector installed

Install in summer 2000



# Example Spectra from Muons

Year 2 Results

### **Year 4 Results**





\* Year 4 includes both North and South Muon Arms and Level-2 Trigger which makes possible  $\rho$ ,  $\phi$  physics and discrimination of Y states.

### **Proposals and Ideas**

PHENIX may propose to run many symmetric lighter ion collisions (which have higher maximum luminosity) in addition to Au + Au to best cover a broad range in collision geometry.

### All in one year of running

| Species | Number of J/ψ's<br>(0.6 R.Y AuAu,<br>0.1 R.Y others) |  |  |
|---------|------------------------------------------------------|--|--|
| 00      | 1.15E+05                                             |  |  |
| SiSi    | 1.44E+05                                             |  |  |
| CuCu    | 1.56E+05                                             |  |  |
| II      | 1.73E+05                                             |  |  |
| AuAu    | 1.79E+05                                             |  |  |



Vince Cianciolo

### First Beam

At around 2 am on July 13th, 1999 the first beam made it around the ring. First measured via PHENIX beam-beam and scintillation counters.





### Conclusions

Exciting physics coming up soon!!!

Maybe a fancy picture of the beam status